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Abstract. Maintaining or increasing soil organic carbon (C) is important for securing food production, and for mitigating

greenhouse gas (GHG) emissions, climate change and land degradation. Some land management practices in cropping, grazing,

horticultural and mixed farming systems can be used to increase organic C in soil, but to assess their effectiveness, we need

accurate and cost-efficient methods for measuring and monitoring the change. To determine the stock of organic C in soil, one

needs measurements of soil organic C concentration, bulk density and gravel content, but using conventional laboratory-based5

analytical methods is expensive. Our aim here is to review the current state of proximal sensing for the development of new soil

C accounting methods for emissions reporting and in emissions reduction schemes. We evaluated sensing techniques in terms

of their rapidity, cost, accuracy, safety, readiness and their state of development. The most suitable technique for measuring soil

organic C concentrations appears to be vis–NIR spectroscopy and for bulk density active gamma-ray attenuation. Sensors for

measuring gravel have not been developed, but an interim solution with rapid wet-sieving and automated measurement appears10

useful. Field-deployable, multi-sensor systems are needed for cost-efficient soil C accounting. Proximal sensing can be used for

soil organic C accounting, but the methods need to be standardised and procedural guidelines need to be developed to ensure

proficient measurement and accurate reporting and verification. This is particularly important if the schemes use financial

incentives for landholders to adopt management practices to sequester soil organic C. We list and discuss the requirements for

the development of new soil C accounting methods that are based on proximal sensing, including requirements for recording,15

verification and auditing.

1 Introduction

Soil is the largest terrestrial store of organic carbon (C) (Batjes, 1996). Soil organic C is an indicator of soil quality because

it affects nutrient cycling, aggregate stability, structure, water infiltration and vulnerability to erosion (Tiessen et al., 1994;

Lal, 2013). Management of soil organic C is central to maintaining soil health, ensuring food security and mitigating climate20

change (Lal, 2004, 2016b). This is why stabilizing or increasing the stocks of organic C in soil, through the identification and

implementation of locally appropriate agronomic and environmental management practices, has become a political imperative

(ITPS, 2015).

Maintaining or increasing soil organic C stocks is an important consideration in addressing land degradation, which was

recognized under the United Nations Sustainable Development Goal 15, sustainable development of life on land (Nations,25

2015). Used in concert with data on land cover and land productivity, soil organic C stock will be the initial metric used to
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quantify Indicator 15.3.1, the ‘Proportion of land that is degraded over total land area’ (Decision 22/COP.11, (UNCCD, 2013)).

The United Nations Convention to Combat Desertification (UNCCD) will use soil organic C stock as one of its indicators to

monitor progress towards achieving land degradation neutrality (Orr et al., 2017).

Sequestration of soil organic C has been considered as a possible solution to mitigate climate change (Lal, 2016a). Both

policy-makers and scientists expect a large potential for sequestration in agricultural soils due to the large historical losses5

experienced by agroecosystems (Cole et al., 1997). Studies over several decades have demonstrated that improved land use and

management can help to sequester organic C in soil and to reduce greenhouse gas (GHG) emissions (Smith et al., 2008; Ogle

et al., 2005; Poeplau and Don, 2015). This opportunity was the motivation behind the ‘4 pour 1000’ initiative, launched at the

COP21 meeting in Paris, which aims to increase global soil organic matter stocks by 4 parts per 1000 (or 0.4 %) per year as

a compensation for global GHG emissions from anthropogenic sources. Engagement in ‘4 pour 1000’ involves stakeholders10

voluntarily committing to implementing farming practices that maintain or enhance soil organic C stocks in agricultural soil

and to preserving C-rich soil (Lal, 2016a). In addition to increasing soil organic C, the initiative provides an opportunity to

implement transparent and credible protocols and methods for C accounting, monitoring, reporting and verification that are

compatible with national GHG inventory procedures (Chambers et al., 2016).

Although there is good potential for changes in agricultural land use and management to sequester soil organic C (Mach-15

muller et al., 2015), their implementation requires efficient new methods for measurement and monitoring of the C stocks. To

determine baselines and to assess the success of management practices for sequestering soil organic C, the variability in soil or-

ganic C stock needs to be quantified in both space (laterally across the landscape and vertically down the soil profile) and time.

Changes in soil organic C stock that are due to changes in land use and management or climate, occur slowly (e.g. compared to

changes in biomass C), and must be measured over longer periods of more than 5 to 10 years (Smith, 2004). Changes are also20

likely to be small relative to the large C stock that is present in the soil, which is highly variable. New measurement methods are

also needed to delineate the potential benefits and liabilities of establishing soil C projects and C accounting activities (IPCC,

2007). Methods for soil organic C sampling and analysis must be accurate, practical, inexpensive and cost-efficient, and when

used for monitoring, they must consider the minimum detectable difference (Batjes and van Wesemael, 2015). Additionally, the

new methods should accurately quantify the magnitude and uncertainty of soil C change that could be attained by introducing25

defined agricultural management practices (Paustian et al., 2016).

Quantification of soil organic C stock change requires the measurement of soil organic C concentration, bulk density and

gravel content over time. Conventional methods to measure soil organic C stocks involve field soil sampling, followed by

sample preparation and laboratory analysis. For determination of soil C concentration, dry combustion (e.g. Nelson and Som-

mers, 1996) is the benchmark method because of the vast experience acquired in using it, and because of its accuracy. For30

bulk density, conventional measurements are made using the volumetric ring method, or the clod method for soil containing

a lot of rock fragments (Blake and Hartge, 1986). For gravel content, the conventional method involves manual separation of

gravel from the fine earth fraction (McKenzie et al., 2002). These methods are time consuming and expensive, particularly for

measuring at depth.
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Sensors can provide rapid, accurate, inexpensive, non-destructive measurements of soil organic C stocks and other soil

properties. Their measurements are accurate and cost-efficient (Viscarra Rossel, R. A. and Brus, 2018). While there are several

reviews on the use of sensors for measuring soil organic C concentration (e.g Bellon-Maurel and McBratney, 2011; Izaurralde

et al., 2013; Reeves et al., 2012; Stenberg et al., 2010; Viscarra Rossel, R.A. et al., 2011), few studies report on sensors for

measuring bulk density or gravel (Lobsey and Viscarra Rossel, 2016; Fouinat et al., 2017), or report on the integration of5

sensing methods for the purpose of soil organic C accounting. Our objective here is to review the current state of proximal

sensing for soil C accounting. Specifically, our aims were to review: (1) soil C accounting for emissions reporting and in

emissions reduction schemes, (2) the current state of proximal sensing for measuring soil organic C stocks and monitoring its

change and (3) the use of proximal sensors in the development of new soil organic C accounting methodologies.

2 Soil organic carbon accounting10

Improved measurement methods to account for change in soil organic C stocks are relevant to two key areas of national

GHG policy and reporting: international emissions reporting obligations under the United Nations Framework Convention on

Climate Change (UNFCCC) (i.e. national inventory reporting); and domestic schemes that seek to reduce or offset emissions

through a range of activities, including improved land management practices.

The UNFCCC, and later the Kyoto Protocol, set up a system of national communications and national inventory reporting15

to be compiled by Parties and published by the UNFCCC. To estimate GHG emissions and to monitor changes in C stocks,

including soil organic C, the International Panel on Climate Change (IPCC) developed a tiered methodology that relates data

on land use and management activities to emissions and storage factors to estimate fluxes from the activities (IPCC, 2006).

The three-tiered approach depends on the scale, capability and availability of data. Where country-specific data are currently

lacking, a global default (Tier 1) approach can be used. Tier 1 methods use default equations with data from globally available20

land cover classes and global defaults for reference soil organic C stocks, change factors and emission factors. Tier 2 methods

include nationally derived land cover classes and data for reference soil organic C stocks, change factors and emission factors

specific to local conditions. Tier 3 methods might include national data from the integration of ongoing ground-measurement

programs, earth observation and mechanistic models. Tier 2 and Tier 3 approaches are thought to produce estimates with

reduced uncertainty.25

Soil monitoring networks at the national scale can provide information on changes in soil organic C stocks relative to

a defined baseline through repeated measurements across a defined network of sites over time. This can provide a set of

observations that represent the variation in climate, soil or land use management at a national scale (Batjes and van Wesemael,

2015). However, there are trade-offs between the ability to detect change and the size of the network and the number of

measurements required, which is directly related to cost (Conant and Paustian, 2002). Conventional analytical methods for soil30

monitoring are likely to be cost-inefficient. Sensing on the other hand can be used to cost-efficiently measure soil organic C

stocks, to estimate baselines for national inventory reporting and monitoring (e.g. Viscarra Rossel, R.A. et al., 2014).
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Accurate and cost-efficient methods to quantify changes in C stocks are also needed for a growing number of national

and sub-national emissions reduction and C accounting and trading schemes that incorporate mitigation from soil organic C

sequestration following changes in land management (ICAP, 2017). In this context, how to measure, report on and verify the

impacts of mitigation actions is important for decision-makers because access to financial payments depends on the ability to

demonstrate the sequestration or emissions reductions that might be attained. To date, however, relatively few methodologies5

have been developed for quantifying change in soil organic C stock from changes in land management. Those that have been

developed are based on approaches that use either direct measurement or mechanistic modelling (Table 1). Under such schemes,

endorsed methodologies set out the rules for estimating emissions reductions or C offsets from different activities. Proponents

that change some permissible aspect of their land management, which leads to increases in C stocks or reductions in emissions,

can use these methods to earn payments. Information from these activities can then also contribute to national inventories.10

For example, the Australian government established the Emissions Reduction Fund (ERF) to encourage the adoption of

management strategies that result in either the reduction of GHG emissions or the sequestration of atmospheric CO2. The ERF

is enacted through the Carbon Credits (Carbon Farming Initiative) Act 2011 (CFI Act), and under it, carbon credits can be

earned by anyone (e.g. landholders, businesses and community groups) undertaking a project that aims to reduce emissions

or sequester C (Australian Government, 2011). Projects must comply with approved methods that define the activities that are15

eligible to earn C credits, how the abatement is measured, verified and reported. These methods1 must comply with the Off-

sets Integrity Standards described in the CFI Act, which require that any C abatement generated through the implementation

of a method can be used to meet Australia’s climate change targets under the Kyoto Protocol or other international agree-

ments. Legislation ensures that only authentic emissions reductions are credited; that the methods used in the ERF are eligible,

evidence-based (supported by relevant scientific results), measurable, verifiable, conservative, additional, and permanent (2520

or 100 years); and that there is no leakage. Thamo and Pannell (2016) discuss these requirements and the challenges they pose

for development of policy for soil C sequestration. Once a method is implemented by a proponent it can be used to produce

Australian Carbon Credit Units (ACCUs). A single ACCU corresponds to sequestration or emission avoidance of 1 tonne of

CO2-equivalent, which proponents can sell to generate income.

The Australian ERF currently has two soil C sequestration methods: (i) ‘Sequestering carbon in soils in grazing systems’25

(Australian Government, 2014) that aims to quantify changes in soil organic C stocks over time using conventional soil com-

posite sampling and laboratory analysis; and (ii) ‘Estimating sequestration of carbon in soil using default values’ (Australian

Government, 2015) that uses default values for the rates of soil C change from different activities, predicted with the Full Car-

bon Accounting Model (FullCAM), which is used in the Australian National Greenhouse Gas Inventory. A new method under

the Australian ERF, currently awaiting ministerial approval, will: allow the use of covariates and prior information to inform30

the sampling design; include additional land management activities; and allow the use soil sensors — visible–near infrared

(vis–NIR) and mid infrared (mid-IR) spectrometers and gamma attenuation densitometers — to measure and monitor changes

in soil organic C stocks (DoEE, 2018). This will be the first methodology in the world to legislate sensing for monitoring and

accounting of soil organic C stocks.

1www.environment.gov.au/climate-change/emissions-reduction-fund/methods
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H

Table 1. Examples of methodologies for estimating change in soil organic C for mitigation actions related to changed management of

agricultural land. Emissions Reduction Fund (ERF); Climate Change and Emissions Management Act (CCEMA); Alberta Offset System

(AOS); Climate Policy Framework (CPF)

Country Policy setting Developer Methodology Activity Approach

Australia ERF Australian Government Sequestering carbon Changed management Direct measurement

in soils in grazing of grassland

systems

(Australian Government, 2014)

Australia ERF Australian Government Estimating sequestration of Changed management Modelling

carbon in soil using of cropland

default values

(Australian Government, 2015)

Canada CCEMA, AOS Government of Alberta Conservation Cropping Changed management Sequestration coefficients

Protocol1 of cropland from measurement

and modelling

Canada No monetization Government of Saskatchewan Prairie soil carbon Changed management Modelling and

of soil C offsets and other stakeholders balance project2,3 of cropland and grassland direct measurement

Mexico CPF Climate Action Reserve Grassland Project Avoided conversion of Emissions factors

Protocol4 grassland to cropland from modelling
1 http://aep.alberta.ca/climate-change/guidelines-legislation/specified-gas-emitters-regulation/documents/ProtocolConservationCropping-Apr2012.pdf
2 http://www.usask.ca/soilsncrops/conference-proceedings/previous_years/Files/cc2000/docs/posters/018_post.PDF
3 http://ssca.ca/images/new/PSCB.pdf
4 http://www.climateactionreserve.org/how/protocols/grassland/

3 Soil sampling, measurement and estimation of soil organic C stocks

3.1 Measuring soil organic C stocks

Effective accounting of changes in soil organic C stocks requires measurement of the stocks and their uncertainty for a defined

baseline and over the monitoring period. Internationally, the default method to determine soil organic C stock (Cs) for the

accounting of change is to multiply measurements of soil organic C concentration, bulk density and gravel content at a fixed5

depth of 0–30 cm, and to report the stock as a mass of carbon per unit area in tonnes of organic C per hectare (IPCC, 1997):

Cs = Cm× ρ× (1− g

100
)× d (1)

where Cm is the mass of soil organic C in the soil (%), ρ is the soil bulk density (g cm−3), g is the gravel content (%) and d is

the thickness of the layer (cm). Our definition of soil organic C used here extends that of the IPCC Guidelines (IPCC, 2006),

which address the measurement of soil organic C in mineral soil in the 0–30 cm layer, by extending to deeper soil layers.10

Based on typical rooting depths found in agricultural crops and pastures, and the capacity of deeper soil horizons to sequester
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relatively large amounts of soil organic C, there is evidence to suggest that measurements should extend to deeper layers (e.g.

Fan et al., 2016; Lorenz and Lal, 2005; Viscarra Rossel, R.A. et al., 2016b).

Conventionally, measurement of soil organic C stocks involves soil sampling (see section 3.2), followed by sample prepa-

ration and laboratory analysis. For the analytical determination of soil C concentration, sample preparation typically entails

drying, crushing, grinding, sieving, sub-sampling, quantification of the sample’s water content and further fine-grinding for dry5

combustion analysis (e.g. Nelson and Sommers, 1996; Rayment and Lyons, 2011). Conventional measurements of soil bulk

density typically involve using the volumetric ring method, where a pit is dug and a metal core of known volume is driven into

the soil at the fixed depth. The bulk density of the soil is then determined by dividing the oven-dry soil mass of the sample by

the volume of the core (Blake and Hartge, 1986). Alternatively, the clod method (e.g. Hirmas and Furquim, 2006; Cunningham

and Matelski, 1968; Muller and Hamilton, 1992) has been used for soil with abundant rock fragments, where clods of soil10

are sampled, sealed (e.g. with paraffin), and the volume of the sample is determined by its displacement of water in a vessel.

Gravel content is conventionally measured by breaking the soil cores into specific depth intervals, drying in an oven, crushing

the soil with a mortar and pestle and then sieving to separate the fine earth (≤2 mm) fraction from the gravel.

Equation (1) can be used to quantify and report the change in soil organic C stocks at fixed depth intervals. However,

this method can systematically overestimate or underestimate C stocks if bulk densities increase or decrease, respectively,15

from changes in land use or land management practices (e.g. changes in cultivation). Where bulk densities differ between

management practices or over time periods, more accurate estimates of the C stock and its change can be derived using

measures of cumulative or equivalent soil masses per unit area (Wendt and Hauser, 2013). Various studies have recognized

the importance of this approach, which also reduces the effect of depth of sampling errors (Ellert et al., 2001; Gifford and

Roderick, 2003; Lee et al., 2009; VandenBygaart and Angers, 2006; Wendt and Hauser, 2013). Both the current (Table 1;20

Australian Government, 2014) and the new (Australian Government, 2018) direct measurement method under the Australian

ERF use an equivalent soil mass (ESM) approach to quantify soil organic C stock change.

3.2 Soil sampling and estimation

Before measuring the soil organic C stocks (Equation 1), sampling locations must be determined. Methods to select sampling

locations include probability sampling and non-probability sampling, which result in to two widely used sampling philosophies:25

design- and model-based sampling (Brus and DeGruijter, 1993; de Gruijter et al., 2006; Papritz and Webster, 1995). In design-

based sampling, the randomness of an observation originates from the random selection of sampling sites, whereas in model-

based sampling, randomness comes from a random term in the model of the spatial variation, which is added to the model

because our knowledge of the spatial variation is imperfect. Probability sampling is therefore a requirement for design-based

sampling but not for model-based.30

Choosing which approach to use depends largely on the purpose (Brus and de Gruijter, 1997). For instance, if one needs

estimates of the mean or total soil organic C stock and their accuracy over a given area, whose quality is not dependent on

the correctness of modelling assumptions, then design-based sampling might be most suitable. If the aim is to produce a map

of the soil organic C stock over the area, then model-based sampling will be preferable. However, because the design-based
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approach can also be used for mapping, and the model-based approach can be used for estimation of means or total C stocks,

the choice of approach to use can be difficult. Viscarra Rossel, R.A. et al. (2016b) demonstrated the use of probability sampling,

which allowed design-based, model-assisted and model-based estimation of the total soil organic C stock across 2837 ha of

grazing land in Australia. Spectroscopic and active gamma attenuation sensors were used for estimating soil organic C stocks

and their accuracy in the 0–10 cm, 0–30 cm and 0–100 cm layers, and for mapping the stocks in each layer across the study5

area. Although the design-based, model-assisted and model-based estimates of the total soil organic C stocks were similar, the

variances of the model-based estimates were shown to be smaller than those of the design-based methods. The authors noted

that the advantage of the design-based and model-assisted methods, unlike the model-based approach, was that their estimates

of the baseline soil organic C stocks and their variances did not rely on the assumptions of a model and that although the model-

based approach produced the smallest variance of the predicted total soil organic C stocks, the results cannot be generalized10

to other sample sizes and types of sampling designs. We propose that whatever the method used, careful consideration of the

sampling design for the estimation of both baseline soil organic C stocks and for monitoring should be used. Further discussion

on the advantages and disadvantages of the sampling approaches can be found in de Gruijter et al. (2006).

4 Sensors for soil organic C accounting

We reviewed the literature on proximal soil sensing (see Viscarra Rossel, R.A. et al. (2011) for a definition), to learn about the15

sensors that can be used to measure the soil properties needed to determine the organic C stock in soil: organic C concentration,

bulk density and gravel content (Equation 1). Table 2 provides a summary of our assessment of each sensor technology in terms

of their rapidity, accuracy, cost and safety, their readiness for field-deployment and their stage of research and development.

Below we also evaluate and report on their suitability for soil organic C accounting and for monitoring its change.
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Table 2. Assessment of relevant proximal sensing technologies against the review criteria in terms of readiness to underpin a carbon ac-

counting methodology. The sensing methods are visible–near infrared (vis–NIR) and mid infrared (mid-IR) diffuse reflectance spectroscopy;

laser induced breakdown spectroscopy (LIBS); inelastic neutron scattering (INS); active gamma-ray attenuation (AGA); gamma- and X-ray

computed tomography (CT). A ? indicates unknown or not sufficiently developed; Cost: $AU 0–40,000; $$AU 40,000–100,000; $$$AU

100,000+; Active source refers to whether the source of energy used by the sensor is radioactive.

Method Rapid? Accurate? Sensor cost? Developed? Field use? Active source?

SOC

Colour yes no $ yes yes no

vis–NIR yes yes $–$$ yes yes no

mid-IR yes yes $$ yes ? no

LIBS yes yes $$–$$$ yes ? no

INS yes yes $$$ no yes yes

Bulk density

vis–NIR, mid-IR yes no $–$$ yes yes no

AGA transmission yes yes $ yes yes yes

AGA backscatter yes no $ yes yes yes

CT no ? $$$ no no yes

Gravel

Wet-sieve and image analysis yes yes $ no yes no

CT no ? $$$ no no yes

4.1 Sensing of soil organic C concentrations

4.1.1 Soil colour

Because soil organic C content is known to influence the colour of a soil, it is possible to use colour to estimate the organic

C content (e.g. Viscarra Rossel, R.A. et al., 2006a; Ibañez Asensio et al., 2013; Liles et al., 2013), for example, using digital

cameras (Viscarra Rossel, R.A. et al., 2008a) or mobile phone applications (e.g. Aitkenhead et al., 2016; Stiglitz et al., 2017).5

While colour has been shown to adequately predict soil organic matter content for some soil types and at regional or larger

scales (e.g. Ibañez Asensio et al., 2013; Liles et al., 2013; Viscarra Rossel, R.A. et al., 2008a), a limitation is that it can be

difficult to use colour to accurately estimate the soil organic C content of soil types with inherently small C concentrations, and

at field–farm scales.

8

SOIL Discuss., https://doi.org/10.5194/soil-2017-36
Manuscript under review for journal SOIL
Discussion started: 22 January 2018
c© Author(s) 2018. CC BY 4.0 License.



4.1.2 Soil visible, near- and mid-infrared spectroscopy

Spectroscopic methods characterise soil organic C according to absorptions at specific wavelengths in the given spectral region.

Visible and infrared spectroscopic techniques are highly sensitive to both the organic and inorganic components of soil, making

their use in the agricultural and environmental sciences particularly relevant. Absorptions in the visible (vis: 400–700 nm)

portion of the electromagnetic, are due to electronic transitions and are useful for characterising organic matter in soil as well5

as iron-oxide mineralogy (Sherman and Waite, 1985). Absorptions in the near infrared (NIR: 700–2500 nm) correspond to

overtones and combinations of fundamental absorptions that occur in the mid-infrared region (mid-IR: 2500 and 25 000 nm

(Williams and Norris, 2001). As a consequence, absorptions in the NIR range are weaker and less distinctive compared to those

in the mid-IR. It is useful to combine the vis and NIR ranges as each provides complementary information on soil. Instrument

manufacturers have recognised this and many provide spectrometers that measure the vis–NIR range.10

Visible–NIR spectroscopy has been used successfully to predict soil organic C concentration, even under field conditions,

but in the latter case using a method for correcting or removing the effects of soil water on the vis–NIR spectra (Ji et al., 2015;

Minasny et al., 2011). Mid-IR has also been used used to accurately predict soil organic C. However, mid-IR spectroscopy

has been moslty used in the laboratory with measurements on oven- or air-dried and finely ground (typically 80–500 µm) soil

samples (Le Guillou et al., 2015; Reeves, 2010; Reeves et al., 2012). There are strong water absorptions in the mid-IR, which15

tend to either mask or deform absorptions due to other soil constituents, thus degrading the calibrations and predictions of soil

organic C with mid-IR spectra. There are a number of reviews on the use of vis–NIR and mid-IR spectroscopy for predicting

soil properties, including soil organic C concentrations (Bellon-Maurel and McBratney, 2011; Kuang et al., 2012; Soriano-

Disla et al., 2014; Stenberg et al., 2010; Viscarra Rossel, R.A. et al., 2016a, 2006b). Readers are directed to those reviews for

further detail.20

To predict soil organic C, the spectroscopic techniques described above require the development of an empirical model

(or calibration) that relates the spectra to corresponding soil data analyzed with a reference analytical method such as dry

combustion analysis. This data set, which holds the spectra, the soil analytical data and metadata is referred to as a spectral

library. To be useful for site-specific predictions of soil organic C, the spectral library should contain data that represent the local

variability of soil organic C concentration. In section 5.2 below, we review the methods that can be used to derive spectroscopic25

calibrations for predictions of soil organic C concentrations.

4.1.3 Laser Induced Breakdown Spectroscopy (LIBS)

Laser Induced Breakdown Spectroscopy (LIBS) uses atomic emission spectroscopy. A focused laser pulse heats the surface of

the soil sample to break the chemical bonds and vaporize it, generating a high temperature plasma on the surface of the sample.

The resulting emission spectrum is then analysed using a spectrometer covering a spectral range from 190 to 1000 nm. The30

different LIBS peaks from the analyzed samples can be used to identify the elemental composition of soil. Information on peak

intensities can then be used to quantify the concentration of elements in the sample. Further details of the method are given by

Cremers and Radziemski (2006).

9

SOIL Discuss., https://doi.org/10.5194/soil-2017-36
Manuscript under review for journal SOIL
Discussion started: 22 January 2018
c© Author(s) 2018. CC BY 4.0 License.



Reports that use LIBS for measuring soil organic C generally use large benchtop instruments with prepared samples and

calibrations to predict soil organic C from the measured elemental C (Bel’kov et al., 2008; Cremers et al., 2001; Ebinger

et al., 2003; Knadel et al., 2017). These studies reported good correlations between LIBS measurements and those from dry

combustion, particularly for soil with similar morphology (Cremers et al., 2001; Ebinger et al., 2003). They also reported that

LIBS measurements are rapid (less than a minute per sample).5

The primary limitations of LIBS for soil C measurements are sample preparation, and whether the samples are representative

because only a very small volume of soil is ablated for the measurement (Izaurralde et al., 2013). Chatterjee et al. (2009)

suggested that either intact soil cores or discrete, pressed samples could be used for analysis, and that LIBS spectra could be

recorded along a soil core or from each discrete sample. However, we have not found studies reporting on LIBS measurements

of soil organic C on intact cores, or cores under field conditions. There is potential to account for the spatial variability of10

organic C concentrations in soil profiles by the ability of LIBS to analyze and average multiple ‘spots’ (Chatterjee et al., 2009).

However, we did not find any studies that demonstrate the use of LIBS on intact soil cores or samples that are under field

condition.

Although there are some portable LIBS systems that are commercially available (Harmon et al., 2005), there are few reports

on their use for measuring soil organic C. Izaurralde et al. (2013) used ’SUV-portable’ LIBS equipment for field measurements15

of soil organic C, but pre-processing, including breaking up cores and pelletising sub-samples in a hydraulic press, was required

before measurements. Although the study mentioned the potential for such equipment to measure intact soil cores under field

conditions (wet), albeit with reduced accuracy, this was only speculation.

4.1.4 Inelastic Neutron Scattering (INS)

Inelastic Neutron Scattering (INS) involves spectroscopy of gamma rays induced by fast- and thermal-neutrons interacting with20

the nuclei of the elements in soil. Fast neutrons, generated by a neutron generator, penetrate the soil and stimulate gamma-rays

that are then detected by an array of scintillation detectors such as NaI. Peak areas in the measured spectra are proportional

to the elemental composition of the soil. Using information on the peak intensities (counts) of the measured spectra and an

established calibration, the results are reported immediately in units of g C m−2 (Wielopolski et al., 2008).

The suggested benefits of INS include the ability to interrogate large volumes of soil over a relatively large footprint and25

the ability to measure to a depth of approximately 30–50 cm (Chatterjee et al., 2009). Thus there is good potential for using

it to non-invasively measure soil organic C (volumetrically) to a depth of around 30 cm. There is also no sample preparation

required. Wielopolski et al. (2011) reported on the feasibility of an INS instrument for measuring soil organic C. The sensor

used high-energy neutrons and photons to sample soil volumes up to about 0.3 m3 and from approximately 20 to 30 cm deep,

with a 150-cm-diameter footprint. Although this technology appears useful, it is not yet sufficiently developed, the equipment30

is expensive and there are concerns around the safe use of fast neutron generators in farms (Izaurralde et al., 2013).
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4.2 Sensing of soil bulk density

4.2.1 Active gamma-ray attenuation (AGA)

Active gamma-ray attenuation (AGA) measures the attenuation of the radiation by the soil, as defined by Beer-Lambert’s Law,

and provides a direct measure of the soil density. Because the mass attenuation coefficient of soil is a function of both photon

energy and the elemental composition of the soil, attenuation is affected by soil texture and mineralogy. Measurement of bulk5

density by AGA can be made using either the scattering method or the transmission method; the first is applied to mostly

surface determinations, mainly using gamma/neutron surface gauges, while the latter is used for measurements at depth, which

can be made in the laboratory or in the field (Pires et al., 2009).

AGA with a gamma (or neutron) surface gauge and a source of radiation that is lowered into the soil to the effective

measurement depth, can be used to measure soil density. The backscattered gamma radiation that originates from the source,10

loses some of its energy on the way back to the scintillation detector at the surface, and the energy of the detected radiation

is proportional to the density of the soil. The technique requires considerable soil preparation and correction for soil water

to derive soil bulk density. Soil surface preparation requires that there are no gaps between the soil and the sensor and, for

measurements at depth, a pit needs to be dug to the effective measurement depth into which the active gamma source is

lowered. Reports on the accuracy of these measurements are variable (Holmes et al., 2011; Timm et al., 2005). This might be15

due to problems with uneven soil surfaces and other soil preparation issues. Relationships between bulk density measured with

a neutron density meter and those using the conventional ring method were not strong and were variable among sites (R2=0.14-

0.47,N=75; Holmes et al. (2011)), while others required new calibrations for different soil types or bulk densities<1.4 g cm−3

(C’assaro et al., 2000; Rousseva et al., 1988). By comparison, other studies have shown that bulk densities measured using a

neutron-gamma surface gauge tended to be lower than the conventional ring method (e.g. Timm et al., 2005; Bertuzzi et al.,20

1987; Rawitz et al., 1982), although this difference was not statistically significant.

AGA using measurements of transmission can be used to measure soil density. In this case, the measurements are made

axially through a soil core and the attenuation of gamma radiation passing through it to the scintillation detector is proportional

to the density of the soil. Pires et al. (2009) and Lobsey and Viscarra Rossel (2016) provide descriptions of the measurement

principles. The method requires sampling of intact soil cores and when measurements are made on soil under field condition,25

corrections for water, θ, are needed. No other sample preparation is required.

The bulk density of the soil cores, ρb, can be derived with (Lobsey and Viscarra Rossel, 2016):

ρb =
1
xµs

ln(
I0
I

)− µw

µs
ρwθ, (2)

where I is the incident radiation at the detector, I0 is the un-attenuated radiation emitted from the source and x is the sample

thickness in cm, µs is the mass attenuation coefficient of dry soil in cm2 g−1, µw is the mass attenuation coefficient of soil water30

at 0.662 MeV, ρw is the density of water (taken as 1 g cm−3) and θ is the volumetric water content of the soil in cm−3 cm−3.

Good agreement between measures of bulk density with an AGA transmission sensor and the conventional volumetric ring

method have been found for dry samples in the laboratory (Pires et al., 2009). More recently, Lobsey and Viscarra Rossel
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(2016) showed that this method with vis–NIR corrections for water can accurately and rapidly (on average 35 seconds per

measurement) measure, exsitu, the bulk density of soil cores sampled (wet) under field condition. The method facilitates

the measurement of soil bulk density at fine depth resolution enabling characterisation of the spatial variability of soil bulk

density in lateral and vertical directions. Lobsey and Viscarra Rossel (2016) report that the accuracy of measurements was

similar to that obtained using the conventional single ring method (RMSE=0.06 g cm−3, R2=0.90, N=32). Further, the authors5

show that the method can be used to determine organic C stocks on a fixed-depth or equivalent soil mass basis (Lobsey and

Viscarra Rossel, 2016).

4.2.2 Computed tomography (CT)

The use of computed tomography (CT) in soil science was introduced several decades ago (Petrovic et al., 1982), and has

since been used to assess porosity and pore size distribution (inversely related to bulk density), tortuosity, soil structure and10

compaction (Lopes et al., 1999; Pires et al., 2010). CT is based on the principle that electromagnetic radiation (commonly

X- or gamma rays), is attenuated by matter. Similar to the AGA described above, attenuation follows the Beer-Lambert Law.

CT is used to convert the attenuation of the radiation by matter into CT numbers called tomographic units (TUs), and the

soil mass attenuation coefficient is used to derive soil density. The techniques can produce cross-sectional images to create a

three-dimensional model, and hence they have good potential for measuring soil bulk density (and gravel content, see section15

4.3.1 below) of intact soil core samples.

Only few studies have demonstrated that gamma-ray CT can be used to measure soil bulk density (Pedrotti et al., 2005;

Timm et al., 2005). Timm et al. (2005) compared measurements of bulk density with gamma-ray CT to several other methods,

including the conventional volumetric single ring method and found the CT technique to be more accurate. In an evaluation of

the potential for X-ray microtomography for measuring the bulk density of soil with different textures and at different depths,20

Segnini et al. (2014) found only moderate linear agreement with the conventional volumetric ring method (R2=0.58, N=12).

They concluded that factors such as the ‘beam hardening’ effect (see Cnudde and Boone (2013)) and the polychromatic nature

of X-ray microtomography make it difficult to directly measure soil bulk density. However, further evaluation is required. An

advantage of the CT methods is that they can provide detailed analysis of soil bulk density profiles at a fine resolution. Cnudde

and Boone (2013) provide a review of the applications and limitation of X-ray CT.25

4.2.3 Spectroscopic- and pedo-transfer functions

The bulk density of soil is a measure of the amount of pore space in a volume of soil, thus spectroscopy, being a surface mea-

surement, cannot physically measure density, particularly if the soil has been ground and sieved. Nonetheless, it is often sug-

gested that predictions of bulk density using vis–NIR or mid-IR spectra are possible. The reason is that under certain conditions,

these spectroscopic models rely on second- or higher-order correlations to other soil constituents that are spectroscopically-30

active (e.g. minerals, organic matter, water). However, because the predictions are ‘indirect’, they can be biased. Moreira et al.

(2009) found that using vis–NIR spectroscopy on dry soils to predict soil bulk density produced inaccurate results and con-

cluded that further research was needed to assess the limits and specificity of the method. A more recent study by Roudier et al.
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(2015), using vis–NIR on wet intact cores, found that predictions of bulk density were relatively accurate (in soil containing

no gravel), but calibration was at a very local scale and thus for very specific conditions. Pedotransfer functions (PTFs) are

also commonly used to rapidly measure soil bulk density (e.g. Tranter et al., 2007), however such functions are often biased

and/or imprecise and therefore unsuitable for determinations of soil organic C stocks even when developed with soil from the

same study area (Don et al., 2007). A further disadvantage of using PTFs is that they use other soil properties, which need to5

be measured, as input variables.

4.3 Sensing of gravel

Gravels are defined as coarse fragments with particles that are coarser than 2 mm (McKenzie et al., 2002). The presence of

gravel has a significant effect on the mechanical and hydraulic properties of soil (Brakensiek and Rawls, 1994; Sauer and

Logsdon, 2002). If gravel is present but not accounted for, it could bias the measurements of soil organic C stocks (Lobsey10

and Viscarra Rossel, 2016; Poeplau et al., 2017). For example, the presence of abundant coarse fragments (>20%) adversely

affected measurement of soil bulk density by both conventional and AGA using backscatter methods (Holmes et al., 2011).

Sensing of gravel is difficult and so it is typically measured manually by drying, crushing, sieving and weighing of the soil and

gravel. However, this method is time consuming. A practical and robust method for sensing gravel needs to be developed.

4.3.1 Wet sieving and image analysis15

Viscarra Rossel, R.A. and Lobsey (2017) developed a wet-sieving system combined with image analysis to more efficiently

measure the gravel content of soil core samples in the field. The system enables rapid wet-sieving of the core samples in 10 cm

increments. The system is modular and can accommodate soil cores of various lengths. The authors tested the system using

four soil types with varying textures and gravel contents. They showed that, for a 1 m soil core, gravel could be separated from

the soil, at 10 cm intervals, in 10–20 minutes, which is considerably faster (by a factor of more than 10) than the conventional20

method. By imaging the resulting gravel and measuring the pixel area or pixel volume occupied by the gravel in the images,

they could accurately estimate the gravel content of the different soil types (R2=0.79–0.90, average R2=0.85 over the four soil

types Viscarra Rossel, R.A. and Lobsey (2017). The authors suggested that the method showed good promise for use in a soil

C stock measuring system and that further testing and improvements of the wet-sieving might include using a dispersing agent

(e.g. (NaPO3)6). A further advantage of the method is that as well as gravel, undecomposed plant materials and roots are also25

separated (Viscarra Rossel, R.A. and Lobsey, 2017).

4.3.2 Computed tomography (CT)

There is good potential for the development of CT methods to measure gravel (and bulk density). However, there is little

research on the topic. Fouinat et al. (2017) tested a novel X-ray CT method to analyse distinct deposits in lake sediment cores.

The analysis highlighted the presence of denser >2 mm mineralogical particles (i.e. gravel) in the silty sedimentary matrix.30

When compared to conventional manual measurements that involved sieving and water displacement to measure volume, they
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found that CT measurements overestimated the volume of the gravel by 11.6 %. The authors suggested that the overestimation

might be due to pixel resolution issues. Nonetheless, the authors obtained a good positive correlation (ρ=0.81) between the CT

measurements and the more conventional method. Further development is required and the issues discussed above for sensing

bulk density also apply here for sensing of gravel.

4.4 Evaluation of sensing for soil organic C accounting5

Based on our review and assessment of the available sensor technologies above, currently, the most suitable proximal sensing

techniques for measuring soil organic C and for monitoring its change are: vis–NIR and mid-IR spectroscopy for estimating

soil organic C concentration, and AGA for measuring bulk density. There are no practical or efficient sensors available for

measuring gravel. Presently, a possible best option might be wet-sieving to separate the gravel fraction and quantification by

weighing or image analysis (Viscarra Rossel, R.A. and Lobsey, 2017). A summary of the benefits and limitations of each of10

these technologies is given in Table 3, and an assessment of their cost and accuracy is given in Table 4.

The cost of spectrometers can vary widely (Table 4). Portable vis–NIR spectrometers (350–2 500 nm) can be purchased

from different manufacturers from approximately AU$30,000–100,000 (Table 4), although their cost is continually decreasing

as technologies develop. Smaller vis–NIR spectrometers that use micro-electromechanical systems (MEMS) technologies are

emerging and are less expensive, but not many have been thoroughly tested. Prices for mid-IR portable spectrometers (2500–15

20,000 nm) are approximately AU$50 000–70 000, and for mid-IR benchtop spectrometers, approximately AU$20 000–90 000,

depending on the size, type of detector, sensitivity and amount of automation. Spectroscopic measurements of soil organic C

concentration in the laboratory are large than measurements under field conditions because of the need for sieving, drying and

grinding. mid-IR measurements are more expensive because of the need for fine grinding. Both vis–NIR and mid-IR techniques

provide accurate predictions of soil organic C on dry soils (Table 4). Accuracy using vis–NIR on wet soil under field conditions20

is generally lesser than that for dry soils in the laboratory, although the difference can be relatively small (Table 4).

AGA sensors for measuring bulk density are also quite readily available (Table 4). Measurement costs are significantly

smaller for AGA using transmission than for AGA using backscatter because of the additional soil preparation required for the

latter. There are few assessments of accuracy of AGA for measurement of bulk density, but these have shown good accuracy for

AGA using transmission and variable accuracy for AGA using backscatter. There is no information on the cost and accuracy25

of wet sieving and image analysis for quantifying gravel (Table 4). Viscarra Rossel, R.A. and Lobsey (2017) suggested that a

system could be easily developed and that measurement costs would be small.

4.5 Integrated multi-sensor systems are needed for soil organic C accounting

An integrated multi-sensor approach is needed for measuring and monitoring soil organic C stocks because one needs to simul-

taneously measure soil organic C concentration, bulk density and gravel. There are two currently-available, field-deployable,30

proximal multi-sensor systems that could measure soil organic C stocks. One involves inserting the sensors into the soil profile

and making measurements insitu, while the other requires sampling undisturbed soil cores and measuring the soil exsitu.
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Table 4. Assessment of the accuracy and cost of sensing technologies for soil C accounting. The methods are visible–near infrared (vis–NIR)

and mid infrared (mid-IR) diffuse reflectance spectroscopy; active gamma-ray attenuation (AGA) and wet sieving and image analysis. The

accuracy for soil organic C is represented by median values for dry soils at a local scale, and for bulk density, for wet soil corrected for water

with vis–NIR measurements. The statistics reported are the root mean square error of validation (RMSEv ); the coefficient of determination

(R2v) and the ratio of performance to deviation (RPDv). N are the number of local sites at which accuracy was assessed.

Method Instrument cost Measurement cost Accuracy

(’000 $AU) per sample ($AU) N RMSEv R2v RPDv

Soil organic C /%

vis–NIR, dried ground 30–100 8 29-35 0.41 0.85 2.4

vis–NIR, field condition 30–100 0.8 9-10 0.47 0.81 2.3

mid-IR, dried, finely ground 20–90 15 4-8 0.11 0.93 3.7

Bulk density /g cm−3

AGA transmission 15 0.5 1 0.06 0.90 -

AGA backscatter 5 10 3 - 0.33 -

Gravel /%

Wet-sieving and image analysis 100 - 4 - 0.85 -

Veris® Technologies produces commercial sensors for precision agriculture (www.veristech.com), including several field-

deployable systems which can measure electrical conductivity, pH, penetration resistance, and also record the vis–NIR spectra

of soil. The system that is particularly relevant to soil organic C accounting is the P4000, which uses a hydraulic probe system

to insert four sensors into the soil to characterize the profile. The sensors are a vis–NIR spectrometer (350–2200 nm), an

electrical conductivity (EC) sensor and an insertion force sensor. The system does not measure bulk density. Using insertion5

force as a surrogate for bulk density might be possible but would be prone to errors. Wetterlind et al. (2015) tested the accuracy

of predictions of soil organic matter (SOM) using the P4000 system and evaluated whether the predictions were improved

when the sensors were combined. They found that the accuracy of predictions of SOM content using the vis–NIR alone was

good, but the inclusion of insertion force only improved the accuracy of predictions of SOM content by about 10%. They

concluded that these small improvements did not provide strong support for combining vis–NIR sensor measurements with10

measurements of insertion force. However, there was no testing of bulk density.

The Soil Condition Analysis System (SCANS) (Viscarra Rossel, R.A. et al., 2017) uses a combination of proximal sensing

technologies, smart engineering and data analytics to characterize soil laterally across the landscape and vertically down the

profile. The SCANS has an automated soil core sensing system, which can be used in the laboratory or in the field, with

a vis–NIR (350–2500 nm) spectrometer, an AGA densitometer and digital cameras that measure intact soil core samples15
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that are either (wet) under field condition, or dry, at user-defined intervals over the length of 1.2 m soil cores. The system

can measure soil organic C content and composition (particulate, humus and resistant C), bulk density, clay content, cation

exchange capacity, volumetric water content, available water capacity, pH, iron and clay mineralogy (Viscarra Rossel, R.A.

et al., 2017). Each measurement with the sensors takes approximately 35 seconds, so that measuring a 1 m core at 2 cm intervals

(i.e. 50 measurements along the core) takes approximately 30 minutes. Viscarra Rossel, R.A. et al. (2016b) showed that the5

sensing system can be used to accurately baseline soil C stocks for accounting purposes. The system was use to derive baseline

estimates of soil organic C stocks (Viscarra Rossel, R.A. et al., 2016b) and its efficiency and reliability for soil C accounting

was assessed by Viscarra Rossel, R. A. and Brus (2018). They found that compared to more conventional methods that use

composite sampling and laboratory analysis, sensing with the SCANS is more cost-efficient in that it provides a good balance

between accuracy and cost.10

5 Developing a soil organic C accounting methodology with proximal sensing

5.1 Development of spectral libraries

Measurement of soil organic C using spectroscopy (e.g. vis–NIR, mid-IR) requires calibration of the spectra to soil organic

C content using multivariate statistics or machine-learning algorithms. The calibrations can be derived using existing large

spectral libraries (ESLs) (e.g. Viscarra Rossel, R.A. and Webster, 2012; Shepherd and Walsh, 2002; Stevens et al., 2013), or15

using new site-specific libraries developed with local soil samples (LSLs). Using an ESL to predict soil organic C incurs no

immediate cost but it is likely that the predictions at local site (farm- or field-scales) will be biased (Clairotte et al., 2016;

Guerrero et al., 2014b). Using a LSL will produce more accurate (unbiased) predictions but will incur cost because soil needs

to be analysed in the laboratory to derive the local model.

Significant investment has been made in developing large regional, country and global spectral libraries (Shepherd and20

Walsh, 2002; Brown et al., 2006; Viscarra Rossel, R.A. et al., 2016a), and there will be value in using these for developing

site-specific calibrations. These ESLs could reduce the need for site-specific data. Various approaches have been proposed to

make better use of ESLs for local predictions of soil properties. They are based on either constraining the ESL with spectral or

sample similarities, or augmenting the ESL with site-specific samples.

Memory based learning (MBL) methods aim to constrain the ESL with spectral information, and derive calibrations for each25

unknown sample on a case-by-case basis. By selecting a subset of the ESL to predict each unknown sample, these methods

effectively derive site-specific (i.e. local) calibrations. Methods include the LOCAL (Shenk et al., 1997) and locally weighted

regression (LWR) (Naes et al., 1990) algorithms, and their variants. Essentially, the methods select calibration samples from

the ESL with a distance metric (e.g. Mahalanobis distance) in the multivariate space between the calibration and the unknown

samples. In LWR weighting the calibration samples are also weighted according to their spectral dissimilarity (distance) to the30

unknown samples.

Ramirez-Lopez et al. (2013) proposed spectrum base learning (SBL), which is a type of MBL. The spectrum-based learner

selects nearest neighbours from an ESL using distance metrics calculated in the principal component space and optimizing the
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number of components used to identify the nearest neighbours in the selection. Spectroscopic modelling is then carried out

with both the selected neighbours and the matrix of distances to the unknown samples as the training data set.

The ESL can also be constrained with other information such as soil order, type, texture and parent material (e.g. Vasques

et al., 2010; Sankey et al., 2008a). Shi et al. (2015) proposed the use of both spectral similarities and geographically constrained

local calibrations to predict soil organic C content. They reported improvements in the accuracy of predictions when the ESL5

was constrained to the geographic region from which the unknown samples originated. Viscarra Rossel, R.A. and Webster

(2012) developed general ESL calibrations for Australian soil using the machine learning algorithm CUBIST. The authors

showed that the algorithm makes inherently local predictions because CUBIST partitions the spectra into local subsets that are

each modelled separately.

There are two techniques that use the augmenting approach. They are ‘spiking’, which uses several local spectra to augment10

the calibration made with an ESL (e.g. Guerrero et al., 2010; Sankey et al., 2008b; Viscarra Rossel, R.A. et al., 2009), and

spiking with extra-weighting (Guerrero et al., 2014a), which uses multiple copies of the local samples to improve their leverage

in the calibrations. Guerrero et al. (2014a) showed that the approach improved on spiking and suggested it might be more

appropriate with larger spectral libraries.

Lobsey et al. (2017) developed a new approach, which they call RS-LOCAL, that makes best use of ESLs and minimises15

the number of site-specific, local samples for deriving calibrations. The method is data-driven and makes no assumptions on

spectral or sample similarities. Using data from farms in Australia and New Zealand, they showed that by combining 12–20

local with a well-selected set of samples from an ESL, the robustness and accuracy of the predictions was improved compared

predictions made using a ‘general’ calibration and other methods tested. The authors suggested that RS-LOCAL can reduce

analytical cost and improve the financial viability of soil spectroscopy.20

5.2 Spectroscopic modelling: training, validation and prediction

As described above, to measure and monitor soil organic C with spectra, a local spectroscopic model needs to be developed

to ensure that the estimates of organic C are unbiased. Therefore, once the soil in a study area has been sampled, according to

an appropriate soil sampling design (see section 3.2), the spectra of the sampling units in the sample should be recorded using

standardised protocols and guidelines, such as those described by the Global Spectral Library in Viscarra Rossel, R.A. et al.25

(2016a). Following a spectral outlier analysis to identify erroneous spectra (due to rocks, roots and other non-soil materials),

the spectra of the sample, which characterises the variability in the study area, is used to guide the selection of data for the

spectroscopic modelling and prediction, i.e. the training, validation and prediction sets.

The training set should be selected with a method that ensures that the training spectra adequately represent the sample,

e.g. Kennard-Stone (Kennard and Stone, 1969), or Duplex (Snee, 1977) algorithms. The validation set, should be selected30

by random sampling to ensures unbiased assessment of the spectroscopic model predictions. How many spectra to use for

training and for validation depends on the available budget, because the selected sampling units will need to be analysed with

conventional laboratory methods, and on the heterogeneity of the sample. Spectroscopic models for prediction of soil organic

C that are developed and validated with too few data can lead to unstable and erroneous results (Reeves et al., 2012). Once the
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total number of sampling units are selected for the spectroscopic modelling, a general rule of thumb is to use two-thirds for

training and the remaining third for validation, although this is not a hard rule and the choice might depend on the total number

of sampling units that are selected. The prediction set is made up of the data that remains in the sample after the training and

validation sets have been selected.

Once the spectra for the modelling have been selected, soil aliquots of the respective sampling units need to be prepared for5

the analysis of soil organic C concentrations in the laboratory, e.g. by LECO (Laboratory Equipment Corporation), combustion

analysis. It is important to note that the inaccuracy and imprecision of analytical results are directly related to the sampling,

handling and analytical procedure (Viscarra Rossel, R.A. and McBratney, 1998). Therefore, soil sample preparation (drying,

crushing, grinding, sub-sampling) and analytical measurements should be made with certified methods and in an accredited

laboratory that conduct regular technical and inter-laboratory proficiency programs, e.g. in Australia accreditation is though10

the National Association of Testing Authorities (NATA) and the Australian Soil and Plan Analysis Council (ASPAC). We

recommend that an independently assessment of the analytical accuracy is performed by including a small but representative

proportion of ‘blind’ duplicates (e.g. 15 %) in the analysis. If the ‘blind’ duplicate samples exceed a pre-determined threshold

value (e.g. 0.05 % soil organic C), then the samples should be re-analysed by the laboratory. As with any type of modelling,

the dictum when developing spectroscopic calibrations is ‘garbage in=garbage out’ and conversely ‘quality in = quality out’15

(Viscarra Rossel, R.A. et al., 2008b).

The spectra and analytical data in the training set should then be analysed and if necessary, transformed, preprocessed and

pretreated. For example, if the algorithm for the modelling assumes that the response variable is normally distributed, then

the analytical data will need to be checked and if necessary transformed (e.g. with logarithmic transforms) to approximate

a normal distribution. Similarly, the spectra may need transformation to apparent absorbance, it may need smoothing and20

baselining (e.g. using a Savitzky-Golay filter with a first derivative (Savitzky and Golay, 1964)). The spectra may also need

to be mean-centred and if recorded at field conditions, it may need corrections to remove the effects of water on the spectra

(e.g. with either the external parameter orthogonalisation (EPO) (Minasny et al., 2011), or direct standardisation (DS) (Ji

et al., 2015). A recent comparison of EPO and DS is given by Roudier et al. (2017). It is important to note that whatever

transformations, preprocessing and pretreatments are applied to the training set, they must also be applied to the validation and25

prediction sets.

Before embarking on the modelling it is sensible to objectively check for outliers and influential data in training set. This

can be done by calculating Studentized residuals (Cook and Weisberg, 1982), to check for observations with unusually large

residuals, or data that deviate greatly from their mean, i.e. those with high leverage (Martens and Naes, 1989). If outliers are

detected, then further checks for data entry and other errors should be made. Unless there is reasonable evidence to suggest30

that the data are in error, they should not be removed.

Spectroscopic models should be developed by cross-validation to obtain optimal parameterisation of the models and to

minimise or prevent problems with under- or over-fitting. Once a model is developed, model diagnostics should be performed

to interpret the model and also to check that the statistical assumptions of the particular algorithm being used are not violated.

For example, this could simply be done by calculating the residuals of the data in the training set and plotting these against35
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the estimated soil organic C concentrations. This plot can help to diagnose dependence of the predicted value, non-constant

(or heteroscedastic) variances, and non-linear trends that indicate the need for data transformations or alternate curvilinear

modelling methods (see for example, (Martens and Naes, 1989)).

If all assumptions about the model are correct and the model has a good diagnosis, then the optimised model should be

validated with the independent validation set, which were selected at random and that were not used in the training process.5

The type of algorithm used (e.g. partial least squares regression (PLSR), support vector machines (SVM), regression trees) is

not critical as long as the optimisation and validation are done well. Modelling uncertainties could be derived with a Monte

Carlo (e.g. Viscarra Rossel, R.A., 2007), or with Bayesian methods.

The predictions on the validation set should be assessed with statistics that completely describe the errors in the same

units as the analyte (i.e. soil organic C content). For this we recommend the use of the root mean square error (RMSE), which10

measures the inaccuracy of the model predictions, the mean error (ME), which measures their bias and the standard deviation of

the error (SDE), which measures their imprecision. Inaccuracy may be defined as combining both bias and imprecision, so that

RMSE2=ME2+SDE2 (Viscarra Rossel, R.A. and Webster, 2012). Other indices that are commonly reported are the coefficient

of determination (R2), the ratio of performance to deviation (RPD) (Williams and Norris, 2001), or the ratio of performance

to interquartile range (RPIQ) (Bellon-Maurel et al., 2010) and the concordance correlation coefficient (Lin, 1989).We do not15

recommend the use of the R2 alone because it does not account for bias in the model predictions, or the RPD or RPIQ alone

because their categories are rather subjective and variable (Reeves and Smith, 2009).

If the independent model validation statistics are not too dissimilar to those reported in the literature for soil organic C

predictions at the field and farm-scales, e.g. for vis–NIR spectroscopy 0.1–1.0 % organic C, with a median value of 0.3 %

organic C (Viscarra Rossel, R.A. et al., 2016a), we recommend that additional sampling units be selected to augment and20

potentially extend the range of the training set. These values should serve only as guidelines and if the validation statistics fall

outside of these ranges after augmentation of the training set, then it might not be sensible to proceed with spectroscopy for

the estimation of organic C.

The optimised and validated spectroscopic model may then be applied to all of the spectra: the training, validation and

prediction sets, to estimate in a consistent manner, the soil organic C concentration of the entire sample set and their uncertainty.25

If the model was developed on a transformed organic C scale (e.g. square root or logarithmic), then the estimates need to be

back-transformed to the original units.

Figure 1 summarises the procedures for the spectroscopic measurement, modelling and prediction of soil organic C.
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Figure 1. Framework for spectroscopic measurement, modelling and prediction of soil organic C.

5.3 Standards for auditing and verification

Standardisation of the sensing methods and their procedural guidelines are needed if sensing is to underpin methodologies that

help to account for soil organic C stock change. This is particularly important for international initiatives like the ‘4 pour1000’,

which aim to demonstrate that soil can play an important role to mitigate climate change. Standards and guidelines are also

essential in schemes that use financial incentives for landholders to adopt C sequestration practices (see Table 1). In this case,5

standards will help to ensure that only authentic abatement is credited. In the Australian ERF, methods need to comply with

Offsets Integrity Standards, which require that abatement is additional, eligible, measurable and verifiable, evidence based,

statistically defensible, supported by relevant scientific results, permanent, with no leakage and conservative (see Section 2

above).

Bispo et al. (2017) reported that a number of standards exist for the analysis of soil properties, including organic C, but10

suggested that new standards are needed for the measurement of soil C stocks and for the verification of C change. In Table 5, we

propose a list of data and information that needs to be reported when developing a sensing methodology for soil C accounting.

These include, for instance, the type of sensor used, the requirements for calibration, the number of reference analyses to use,

the requirements for validation, the statistics to report, and the information that must be recorded for auditing and verification.
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Table 5. Data to be recorded for auditing and verification in a soil organic C accounting method.

Sensor specifications Manufacturer and model number.

Spectral range.

Source of radiation.

Type of detector.

Instrument calibration procedures.

Materials of calibration standards.

Sensor measurements Condition of the soil: air dry / oven dry / wet / ground, sieved / intact core.

Total number of spectra recorded from the study area.

Number of spectral outliers and outlier method used.

Number of training and number of validation spectra and methods used for selection.

Experimental values for x, µs, µw , θ see Equation 2.

Sensor outliers and method used to identify them.

Laboratory analysis. Laboratory method used laboratory code and accreditation.

Number of ‘blind’ duplicates and the measured standard error of the laboratory (SEL).

Mean, standard deviation, minimum, median, maximum values of the measured data.

Analytical outliers and method used to identify them.

Transformations pre-processing, pre-treatments. Type of transformations used on the laboratory and sensor data.

Pre-processing methods used on the sensor data.

Pre-treatment methods used on the sensor data.

Method used for correcting the effects of water on the sensor data.

Spectroscopic modelling: training. Number of data in the spectral library.

The algorithm used for modelling.

The cross-validation method used.

The optimised setting of the model and the model RMSE and R2.

The model diagnostics and residuals plot.

Spectroscopic modelling: validation. If appropriate, method for back-transformation of the response variable.

The validation RMSE, ME, SDE and concordance correlation.

Plot of the observed vs. predicted validation data.

Spectroscopic modelling: prediction of ‘unknowns’. Mean, standard deviation, minimum, median, maximum values of the predicted data.

Data sets. All sensor data collected from the study area.

The training and validation data.

The analytical data used for calibrating sensors.

Sample identification numbers.

Geographic locations (WGS84) and depth layers where measurements were taken.

Date and time of measurements.

Of course, the list in Table 5, is additional to data on the project area, the sampling design used, the soil sampling method, the

method for estimation and the preparation of the samples for analysis.
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6 Final remarks

For cost-efficient soil C accounting one needs a field-deployable, integrated multi-sensor and data analytics system to derive

estimates of organic C stocks. Currently, the most suitable proximal sensing techniques are vis–NIR spectroscopy for predicting

soil organic C concentration, and active gamma attenuation with measurements of transmission, for bulk density. The use

of mid-IR spectrometers for measurements under field condition needs further investigation and development. Laboratory5

measurements of soil with mid-IR are possible, but sample preparation by additional fine grinding may be expensive. Sensing

with vis–NIR and active gamma attenuation sensors provide accurate, rapid and cost-efficient measures of C stocks, which can

be on either a fixed-depth or an equivalent soil mass basis.

Currently, there are no practical or efficient sensors for measuring gravel, but the development of CT for quantifying both

gravel and bulk density appears promising. Portable CT scanners exist for medical and other applications, including soil, but10

further research and development, or significant modification of existing systems are needed to measure bulk density and

gravel content for C accounting. The system would need to have: 1) ability to rotate the soil core around fixed sensors or rotate

the sensors around the core; 2) short measurement times to produce images of appropriate resolution; 3) adequate emission

energies and appropriate shielding; 4) specialised software for the reconstruction of images and measurement of bulk density

and gravel; and 5) appropriate size and weight to allow routine field deployment. Of course, a vis–NIR sensor for measuring15

soil organic C concentration would need to be used with it. In the meantime, however, separation of gravel by rapid wet-sieving

and quantification by automated weighing or by image analysis, might be an efficient interim.

Sensing of soil organic C concentration with spectrometers require multivariate calibrations. There has been significant

investment over the past decades in developing large regional, country and global spectral libraries, and there is value in

using them. Statistical data-driven methods that use such libraries to reduce the need for local samples for deriving site-20

specific calibrations are being developed. For example, the RS-LOCAL methods can help to improve the cost-efficiency of soil

spectroscopy for C accounting.

The rationale for using sensing in a methodology for soil organic C accounting is that although sensing may not be as precise

per individual measurement compared to laboratory analysis, sensing is more cost-efficient, that is, sensing provides a good

balance between accuracy and cost. Because sensing is cheaper, simpler and more practical to use, many more measurements25

can be made across space (laterally and vertically) and time, so that as an ensemble, the data are more informative. Sensing

can also be non-destructive, allowing soil to be stored in archives for future measurement should auditing and verification be

required. The archived soils can then also ensure that there is consistent temporal data for use in dynamic models or for the

testing of new technologies and approaches as they become available.

Sensing can be used evaluate land use and soil management practices that aim to increase soil organic C stocks, improve soil30

health, increase agricultural production and mitigate GHG emissions. But, to underpin soil C accounting methodologies, the

sensing methods should be standardised and procedural guidelines developed to ensure proficient measurement and accurate

reporting and verification. This is particularly important in schemes that use financial incentives for landholders to adopt

management practices to sequester soil organic C. The new soil C method under the Australian Emissions Reduction Fund
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will allow the use of sensors for C accounting. The method is awaiting ministerial approval and it gets it, it might provide a

template for other countries to follow.
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